Fatty Acid Degradation
Chapter 27, Stryer Short Course

Catabolism Overview
• Lipids as a fuel source—diet
• Beta oxidation
 – saturated
 – Unsaturated
 – Odd-chain
• Ketone bodies as fuel
• Physiology

TAG and FA
• High energy
 – More reduced
 – Little water content
 – 9 Cal/g vs 4 Cal/g for carbs
• Unsaturated FA
• Glycerol
Lipoprotein Review

- Liver is the packaging center
- VLDL are sent out of liver
- Constant cycling of LDL in blood
- Genetic cholesterol problem: no LDL receptors in non-liver cells
- HDLs are "good cholesterol"

Utilization Stage 1: Mobilization

You don't need to know the details!
Glycerol: Glucogenic

- Taken to liver
- Three carbon unit
- Prepared for glycolysis/gluconeogenesis
- What happens to fatty acids?

Utilization Stage 2: Activation and Transport into Matrix

- FA must be attached to CoA
- High energy bond
- Costs ATP → AMP (2 ATP equivalents)

Utilization Stage 2: Transport into Matrix

- Matrix is site of fatty acid breakdown
 - Goes into citric acid cycle
- Carnitine ester: another high energy bond
- Transporter: Major site of regulation of FA degradation
Pathological Applications

- A deficiency of carnitine results in muscle cramps, which are exacerbated by fasting or exercise. Give a biochemical explanation for the muscle cramping, and explain why cramping increases during fasting and exercise.

Utilization Stage 3: Beta Oxidation

- Four step process by which fatty acids cleaved into 2-carbon acetylCoA
- Oxidation leads to formation of
 - QH_2
 - NADH

- Four steps
- Steps 1-3 resemble three steps in ______ pathway
- Step 4 breaks C-C

Symbolic notation: β-C
Carbon number: 3 2 1
Step 1: Acyl CoA Dehydrogenase

- Similar to succinate DH from citric acid cycle
- Prosthetic FAD/FADH₂
- High energy electrons passed on to QH₂
- 1.5 ATP

Step 2: Enoyl CoA Hydratase

- Similar to fumarate hydratase from citric acid cycle
- Addition of water
- No energy cost/production

Step 3: 3-hydroxyacyl CoA DH

- Similar to malate DH from citric acid cycle
- Oxidation of secondary alcohol to ketone
- NADH production
- 2.5 ATP
Step 4: Thiolase

- CoA is used as a nucleophile in a “nucleophilic acyl substitution”
- FA shortened by 2 carbons
- Acetyl CoA produced

One round of β oxidation	Citric acid cycle	Oxidative phosphorylation
1 QH₂ | | 1.5 ATP
1 NADH | | 2.5 ATP
1 Acetyl-CoA | 3 NADH | 7 ATP
 | 1 QH₂ | 1.5 ATP
 | 1 GTP | 1 ATP
Total | | 14 ATP

ATP Accounting

- How much ATP is netted from palmitate (16 carbons)?
 - Cost 2 ATP to activate to palmitate CoA
 - Run through beta oxidation SEVEN times
 - 7 QH₂ = 10.5 ATP
 - 7NADH = 17.5 ATP
 - 8 acetyl CoA produced = 80 ATP
- Total: 106 ATP, or 6.625 ATP per carbon
- Compare to glucose, which is 5.33 ATP per C
Processing Other FA

- Unsaturated and trans fatty acids
 - Trans is natural intermediate
 - Produce 1.5 ATP less for unsaturation, 4 ATP less for di-unsaturation

- Odd chain fatty acids
 - Rare, but do occur in diet
 - One of 2 requirements for Vitamin B₁₂ (cobalamine) in human diet

Production of Succinate

- Carboxylase (biotin)
- Rearrangement (vitamin B₁₂-radical)
- Net glucose can be produced
Review: Peroxisome

- Handles long fatty acids
 - Chain shortening
- Branched fatty acids
- Chemistry of first oxidation is different

Alternate Fate of Acetyl CoA: Ketone Bodies

- Water soluble form of lipids
- Less potential energy than FA
- Main energy source of brain in starvation
- Also used in muscle and intestine
Ketone Bodies Serve as Fuel

- Normal condition
 - Feeds heart
 - Regulation marker: high blood levels turn off fatty acid release from adipose
- Can reach abnormal levels in diabetes, starvation

Diabetes

- No glucose uptake by liver
 - Glycolysis is down, gluconeogenesis is up
 - Oxaloacetate depleted
 - Citric acid cycle has diminished capacity
 - Acetyl CoA levels build up
- No inhibition of fatty acid mobilization from adipose
 - Acetyl CoA levels build up
- Ketone bodies are formed

Starvation

- Fuel Usage: About 7000 kJ/day minimum
- Storage: About 700,000 kJ
 - Fats and muscle protein: 1-3 months
 - Glucose: 7000 kJ (1 day)
- Glucose is essential for brain
Metabolic Priority

- Early starvation: convert protein to glucose (cannot convert fat to glucose)
- Later starvation
 - Preserve muscle
 - Muscle uses fat as fuel; buildup of acetyl CoA shuts down pyruvate → acetyl CoA
 - Low [OAA] means acetyl CoA buildup
 - Ketone bodies produced
 - Brain uses KB, glucose is conserved