Biomimetic Reactions Catalyzed by Cyclodextrins and Their Derivatives

Ronald Breslow and Steven D. Dong

Department of Chemistry, Columbia University, New York, New York 10027

Received October 24, 1997 (Revised Manuscript Received January 14, 1998)

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1997</td>
</tr>
<tr>
<td>Simple Cyclodextrins</td>
<td>1998</td>
</tr>
<tr>
<td>Cyclodextrins Carrying Catalytic or Reactive Groups</td>
<td>2000</td>
</tr>
<tr>
<td>Cyclodextrin Dimers and Tetramers</td>
<td>2005</td>
</tr>
<tr>
<td>Noncatalytic Biomimesis</td>
<td>2007</td>
</tr>
<tr>
<td>Conclusions</td>
<td>2008</td>
</tr>
<tr>
<td>References</td>
<td>2008</td>
</tr>
</tbody>
</table>

Introduction

Cyclodextrins are extremely attractive components of artificial enzymes and other biomimetic materials. They are readily available, they bind hydrophobic substrates into their cavities in water solution, and they have two rims of hydroxyl groups (Figure 1) that can either react with substrates themselves or be used to attach other catalytic and functional groups. Of course, they have disadvantages. For one, unless they are extensively modified their complexes with substrates can be rather flexible and, perhaps, with unpredictable preferred geometry. They are also unstable to strong acid. Thus for some purposes such synthetic cavity species as calixerences2 or synthetic macrocycles3–5 may have advantages. However, one of the chief advantages of cyclodextrins is highly attractive—they are readily available, so it is possible to avoid the synthesis of a binding group and go directly to studies of what can be achieved with their use. Afterward, the lessons learned may be applied to other systems with advantage.

This review will cover all the literature on reactions in which cyclodextrins bind substrates and then either catalyze their reactions or mimic a step in an enzymatic catalytic sequence. However, it will not describe work in which cyclodextrins simply change the course of a reaction without playing an obvious catalytic role involving substrate binding. For example, there are systems in which the main function of the cyclodextrin seems to be to complex a metal ion and keep it in solution.5–11 There are other studies in which binding into a cyclodextrin simply alters the selectivity of attack by an external reagent in some way 12–24 or causes solubilization to facilitate phase transfer catalysis.12,25,26 Presumably such other areas are described elsewhere in this volume.

While much work on artificial enzymes using cyclodextrins has been done in the author’s laboratory, and will be described, every effort is made to describe all the relevant work in the field. Several reviews of this subject already exist and should be consulted for further information.2,27–70 The readily
available cyclodextrins (Figure 1), produced enzymatically, are cyclohexaamylose (α-cyclodextrin, 1a), cycloheptaamylose (β-cyclodextrin, 1b), and cyclooctaamylose (γ-cyclodextrin, 1c). In this review they will be abbreviated as α-CD, β-CD, and γ-CD, respectively.

Simple Cyclodextrins

Interest in cyclodextrins as components of enzyme models was first stimulated with the publication of the book *Einschlussverbindungen* (Inclusion Compounds). In early work, it was shown that cyclodextrin as its oxianion 2 could react with some bound pyrophosphates or carboxylic esters. In later work, it was shown that esters bound into the cyclodextrin cavity could acylate the hydroxyl groups on the cyclodextrin rim with some geometric preferences (Figure 2). For example, m-nitrophenyl acetate (3) transferred its acetyl group to a secondary side hydroxyl of β-CD about 100 times as rapidly as it hydrolyzed under the same conditions in the absence of β-CD. This is of course not a catalytic reaction but is related to the first step of serine proteases in which an acyl group is transferred to a serine hydroxyl in the first enzymatic step. Some computer modeling of this process has been reported.

The rate acceleration, interesting as it was, seemed small as a model of what one could expect in an enzyme–substrate complex. Molecular model building indicated that the reaction of m-nitrophenyl acetate with a cyclodextrin hydroxyl had a problem: the well-bound substrate was pulled partly out of the cavity when it added the β-CD hydroxyl group to form the tetrahedral intermediate. Thus other substrates were examined where this would not occur, and the cavity was also modified. Some very large accelerations of cyclodextrin acylations were seen. A series of p-nitrophenyl ferroceneacrylate esters (e.g. 4a) bound well into the cavity, and acylated a β-CD hydroxyl group with as much as a 5 900 000-fold acceleration relative to substrate hydrolysis under the same conditions (Figure 3). Molecular model building and physical studies indicated that the tetrahedral intermediate, and transition states that resemble it, are bound almost as deeply as was the substrate. This very large acceleration seems a better model for the effect of proximity, as in an enyzme–substrate complex.

The substrates examined were rather rigid, which helps accelerate the reaction by holding the ester group precisely over the β-CD secondary side hydroxyl group. However, for 4b with imidazole, a poorer leaving group than the p-nitrophenoxide ion in 4a, the acceleration was smaller and when the phenyl esters carried less activating groups than p-nitro, the accelerations were also smaller. This reflected a fundamental problem with rigid esters—the oxygen atom of the nucleophilic hydroxyl group must attack perpendicular to the ester group plane but end up as part of the new ester, in the ester plane (Figure 3). The rotation needed to convert the tetrahedral intermediate to the acylated cyclodextrin was blocked by excessive rigidity. When a degree of freedom was introduced in substrate 5 that permitted this rotation, the problem was solved. This calls attention to the need to consider not only the geometry of the substrate–cyclodextrin complex, and not only the geometric change on proceeding to the transition state or related intermediate, but also the geometric changes needed for the entire reaction. Otherwise a late step may become rate determining.

Since this earliest work, a number of esters have been examined that bind into the cyclodextrin cavity and then react with a cyclodextrin hydroxyl group. These include derivatives of adamantane and of various other hydrophobic species in some cases with enantioselectivity. The structural selectivity of such hydrolyses has been used for the analysis of mixtures. Particularly interesting are some cases (e.g. 6 in Figure 4) in which two cyclodextrins cooperate in the cleavage of an ester, with both the acyl and the alkyl group bound into a cyclodextrin. Building on this, some cyclodextrin dimers such as 7 also cleave esters that can bind into both cyclodextrin cavities. Cleavages of bound esters have been performed using cyclodextrin polymers. Some activated...
Amides have also been cleaved as well as a carbonate ester. Additional ligand can promote the formation of a ternary complex—substrate, ligand, cyclodextrin—sometimes with improved reaction rate.

An interesting series of studies involved ester cleavage in the presence of a cyclodextrin and an additional species such as an alcohol that can bind into the cyclodextrin cavity (Figure 5). The additional bound ligand weakens substrate binding but strengthens the binding of the transition state for the acylation reaction. Studies from the same laboratory examined the effect of dimethyl sulfoxide on the cleavage of esters by and the kinetics of ester cleavage by and a modified . Aspirin is cleaved by and .

Cleavage of phosphate esters by nucleophilic attack of a cyclodextrin oxyanion, to form a phosphorylated cyclodextrin, has also been studied. Simple accelerates the cleavage of bis(p-nitropheryl) phosphate by almost 2 orders of magnitude, and some fluorophosphorus nerve gases acylate cyclodextrins rapidly. Polymers containing cyclodextrins have also been examined for phosphate cleavages.

Simple cyclodextrins can act as catalysts and not just reactants. The earliest example was the chlorination of anisole catalyzed by (Figure 6). Mechanistic studies showed that the anisole binds into the cavity and that the hypochlorous acid reagent transfers a chlorine atom to a cyclodextrin hydroxyl group, which is then relayed to the anisole. The result was that a chlorination that randomly attacks both the ortho and para positions of anisole without the cyclodextrin became completely specific for para chlorination in the complex and with an increased rate and changed kinetics, but the specificity was changed with other substrates that bind differently. It was also shown that binding in the cyclodextrin protected the substrate from reagents that could not be catalytically delivered by the cyclodextrin hydroxyl groups.

Interestingly, an enzyme that catalyzes the chlorination of anisole is not selective but forms both the o- and p-chloroanisole. The enzyme functions chiefly to convert chloride ion into HOCl. This indicated that artificial enzymes could have advantages over natural enzymes that were not optimized for chemical processes of interest.

Some related reactions have been reported subsequently. For example, an interesting alkylation of a hydroquinone is promoted modestly by binding into a cyclodextrin (Figure 7). Also, there are many examples in which the point of reaction of an external reagent is influenced when a substrate binds into a cyclodextrin cavity but so far with no evidence that the cyclodextrin catalyzes the process as it does in the HOCl chlorinations. The bromination of anisole and some phenols shows at most a slight acceleration by and is often retarded because tribromide ion binds into the cyclodextrin cavity. However, catalyzes the debromi-
nation of some bromocyclohexadienones (the proposed mechanism is shown in Figure 7), the reverse of one of the steps in the bromination of aromatic rings.147,148 R-CD also modestly catalyzes the reaction of formic acid with bromine.149 The Diels–Alder reaction is an example of an important chemical process for which enzyme catalysts are not available. Models indicated that α-CD could bind cyclopentadiene into its cavity along with a slim dienophile such as acrylonitrile (Figure 8 shows this and an intramolecular case), and for this reason the addition reaction was accelerated by α-CD.150–153 The process has been computer modeled.154 By contrast, the smaller α-CD inhibited the reaction by binding only the cyclopentadiene, and β-CD was also an inhibitor for Diels–Alder reactions with larger components. Interestingly, this study showed that water itself also strongly promoted the Diels–Alder reactions, because of the hydrophobic effect. This observation has led to a major interest in water solvent effects on organic reactions.155–160 An interesting series of studies examined the hydrolysis of nucleoside 2',3'-cyclic phosphates in the presence of cyclodextrins.172–176 The hydrolysis was selective for cleavage of the bond at either the 2' (cf. 13) or the 3' position (cf. 14), depending on the cyclodextrin and substrate used (Figure 11). Polyribonucleotides are also cleaved.176 Enolizations are catalyzed,177,178 as well as aldol condensations179,180 and decarboxylations.181 Some reports have appeared dealing with free radical reactions within cyclodextrin complexes.182,183

Cyclodextrins Carrying Catalytic or Reactive Groups

For the best enzyme models, one must combine the cyclodextrin binding ability with functional groups more effective than the hydroxyls of the simple cyclodextrins. Thus a decision has to be made whether to use the secondary or the primary face of the cyclodextrin for such attachment. Many substrates can bind with their reactive sections on either side of the cyclodextrin, so either face can be used to attach catalytic functions. For example, the first compound 15 referred to as an “artificial enzyme” in the literature was prepared by attaching a metal-binding group to the cyclodextrin secondary face (Figure 12).184 The copper ion catalyzed the hydrolysis of substrates that could bind into the cyclodextrin complexation into β-CD.163 The cis–trans thermal isomerizations of azobenzenes are inhibited by binding into β-CD,164 as is an internal charge-transfer reaction that requires geometric twisting of the substrate.165

The cavity of a cyclodextrin can be modified, e.g. by capping it. Flexible capping in 11 has been described,81,166 as well as capping by a rigid floor in 12 (Figure 10).167–171 Somewhat better acylation rates by bound substrates relative to reactions with unmodified cyclodextrins were observed in a few cases.81,166 An interesting series of studies examined the hydrolysis of nucleoside 2',3'-cyclic phosphates in the presence of cyclodextrins.172–176 The hydrolysis was selective for cleavage of the bond at either the 2' (cf. 13) or the 3' position (cf. 14), depending on the cyclodextrin and substrate used (Figure 11). Polyribonucleotides are also cleaved.176 Enolizations are catalyzed,177,178 as well as aldol condensations179,180 and decarboxylations.181 Some reports have appeared dealing with free radical reactions within cyclodextrin complexes.182,183
cavity but that were not metal ligands and not normally hydrolyzed by copper complexes without the cyclodextrin binding component. In other work described later, it was shown that catalysts with a metal ion bound to the cyclodextrin primary face could also be effective.

In a direct study of the question of facial selectivity, catalysts were prepared with a phosphate group attached to either the primary or the secondary face of β-CD, and it was found that both were effective. Thus for many purposes either cyclodextrin face is suitable for catalytic group attachment, but there are also examples of substrates that preferentially bind into the secondary face of β-CD, which is somewhat more open.189-192 With such substrates, the facial placement of the catalytic group will matter.193,194

Attachment of a simple catalytic group to a cyclodextrin can afford interesting enzyme mimics. For example, an imidazole ring has been attached to the primary (in 16) or secondary (in 17) face and into the linker of a cyclodextrin dimer 7 (Figure 13).198 In 18, an imidazole carries a benzoate group in a position to imitate the function of the aspartate ion in the catalytic triad characteristic of serine proteases such as chymotrypsin (Figure 14).199-203

It was claimed that compound 18 acted to hydrolyze a bound substrate using the imidazole as a base with the carboxylate hydrogen bonded to it, as in the enzymes for which it was a putative mimic. However, the data reported did not support this claim but instead made it clear that the additional functional groups played no useful role. For instance, the reaction rate was said to be first order in hydroxide ion at pH’s above neutrality, not consistent with catalysis by the attached imidazole group. The reaction was simply the normal reaction of unsubstituted cyclodextrin with the bound substrate and actually at a slower rate than for cyclodextrin without the added functionality. Independent work in two other laboratories showed that the imidazole and carboxylate in 18 play no catalytic role but instead impede the reaction.204,205 Thus there is as yet no true mimic of the serine protease enzymes.117,124,206,207

Cyclodextrins carrying nucleophilic groups for more effective ester cleavage, albeit not with catalysis, have been widely studied.93,193,194,200,208-215 A quite effective true hydrolytic catalyst (19) was constructed using a nickel oximate ligand bound to a cyclodextrin carrying another metal binding group (Figure 15).34 The oxime oxyanion is acylated, and the product then hydrolyzes to regenerate the catalyst. Also, a polymer with /β-CD linked to poly(ethylenimine) can bind metal ions to the nitrogen atoms and catalyze the hydrolysis of bound esters.216 A poly(vinylamine) 20 linked to cyclodextrins acts as a nucleophile toward p-nitrophenyl acetate.217

Glyoxalase enzymes use thiols to isomerize α-keto aldehydes to hydroxy acids. A mimic 21 carrying an aminoethanethiol group on the primary face of /β-CD binds 2-naphthylglyoxal and catalyzes its rearrangement with a modest advantage over an analogue without the cyclodextrin (Figure 16).218 In a system
that imitates the style of an enzymatic reaction, if not its details, a bis(phosphine) has been attached to the primary face of \(\beta\)-CD and used to bind rhodium and catalyze reactions of bound substrates (Figure 17). Enzymes frequently use coenzymes to perform catalytic functions not possible with normal amino acid side chains of the enzyme itself. Thus it is of interest to attach coenzymes to cyclodextrins, as mimics of the enzyme–coenzyme combination. The first example was a catalyst 23 in which pyridoxamine was linked to the primary face of \(\beta\)-CD through a sulfur atom. Catalyst 23 was able to transform \(\alpha\)-keto acids (24) to \(\alpha\)-amino acids (25), as pyridoxamine itself does, but with selectivity (Figure 18). That is, phenylpyruvic acid was transaminated ca. 100 times as rapidly as was pyruvic acid by 23, while simple pyridoxamine shows no such selectivity. Compound 23 is selective because of binding of the phenyl group into the \(\beta\)-CD cavity. With the better binding (p-tert-butylphenyl)pyruvic acid, the selectivity relative to pyruvic acid exceeds 15 000.

Another enzyme mimic was prepared with the pyridoxamine attached to the secondary face of \(\beta\)-CD. Its properties were similar to those of the primary derivative. As another comparison, an artificial macrocyclic bonding species was used in place of the cyclodextrin.

Enzymes that synthesize amino acids by transamination do so with stereoselectivity. Thus in transamination by an artificial enzyme there has been much interest in learning how to direct the proton addition to a particular face of the developing amino acid. The earliest example 23 of such an enzyme mimic afforded amino acids with some selectivity, because of the chirality of the cyclodextrin unit. However, more selectivity is expected if the proton is delivered by a chirally mounted basic group, as in the enzyme.

In a study of such transamination with a chirally mounted base, but not involving cyclodextrins, it was found that optically active amino acids could be produced with up to 98% selectivity. However, less success has attended attempts to extend this to artificial enzymes based on cyclodextrins. A compound 27 carrying both a pyridoxamine and an ethylenediamine unit attached to \(\beta\)-CD on neighboring primary methylene groups was prepared and studied for its ability to form amino acids from keto acids with chiral selectivity (Figure 20). Although quite good selectivities were reported, it has proven difficult to duplicate these findings. In some alternate approaches, optical induction has indeed been produced with related catalysts (28) but so far not in high 90% selectivities.

Pyridoxal phosphate is the coenzyme for many processes involving amino acids, including the conversion of serine and indole to tryptophan. A compound 29 has been synthesized coupling pyridoxal to \(\beta\)-CD on its primary side. This artificial enzyme...
mimicked tryptophan synthase, by coupling a dehydroalanine intermediate formed on the pyridoxal unit to an indole held in the cyclodextrin ring (Figure 21).231

Thiamine pyrophosphate is the coenzyme for many important biochemical reactions that formally require the intermediacy of an acyl anion. This involves the addition of the thiazolium C-2 anion to the carbonyl group of the substrate,232–239 which acts much as cyanide ion does in the benzoin condensation. Consistent with this, thiazolium salts will catalyze the benzoin condensation (Figure 22). Since \(\gamma \)-cyclodextrin has a cavity large enough to bind two phenyl rings simultaneously, an artificial enzyme 30 was synthesized with a thiazolium ring linked to \(\gamma \)-cyclodextrin.240,241 It was the most effective catalyst known for benzoin condensation, apparently because it could bind two benzaldehydes and then link them with catalysis by the thiazolium group.

Flavins are coenzymes for electron-transfer reactions. Several research groups have attached a flavin to a cyclodextrin (e.g. 31), so as to promote electron transfers involving bound substrates (Figure 23). In one study,242 a flavin was attached to \(\alpha \)-CD and was found to show preferential electron transfers to nicotinamide derivatives that can bind into the cyclodextrin cavity. In another study, a flavin was attached to either the primary or the secondary rim of \(\beta \)-CD, and the oxidation of bound thiols was investigated.243,244

Nicotinamide is the functional component of some coenzymes that perform oxidation–reduction reactions, often involving hydride transfers. Dihydronicotinamide has been covalently linked to the primary carbon of both \(\alpha \)-CD and \(\beta \)-CD, and the properties of the compounds 32 have been compared.245–247 They reduce bound substrates with increased rates compared with reactions of unlinked dihydronicotinamide and substrate. When an electrophoric benzophenone is linked to \(\beta \)-CD, compound 33 promotes the electrochemical reduction of a bound substrate.248 Apparently an electron is first added to the benzophenone system and from it into the bound substrate to induce reaction.

Coenzyme B-12 catalyzes some remarkable rearrangements, acting along with appropriate enzymes. Two studies have been done so far to try to make an enzyme mimic using cyclodextrin and vitamin B-12. In the first study,249 B-12 was directly linked to a primary methylene group of \(\beta \)-CD by a carbon–cobalt bond in 34. When the B-12 dissociated from the cyclodextrin, a cyclodextrinyl radical was produced. This mimics the formation of a deoxyadenosyl radical in the enzymatic process, when the B-12 unit dissociates from the ribose linked to its cobalt atom. The cyclodextrinyl radical was able to abstract a phenyl selenide group from a substrate bound into the \(\beta \)-CD cavity in 35, just as deoxyadenosine can abstract a hydrogen atom from a substrate bound to its enzyme (Figure 24). This is a necessary step in developing a mimic for the enzymes that use coenzyme B-12, but
there is still much to do before a complete mimic is made.

In the second study, a \(\beta\)-CD group was attached to a propionic acid side chain of vitamin B-12 in 36. It was found that this species could catalyze some rearrangements related to those of the enzyme and with a preference for substrates that bind into the \(\beta\)-CD cavity.

Enzymes often use acid and base catalysts derived from their amino acid side chains, and it is common for them to use more than one such group in simultaneous bifunctional or multifunctional catalysis. Thus it is of interest to imitate this feature in artificial enzymes. For example, the enzyme ribonuclease A uses two imidazole groups, of histidines 12 and 119, as its principal catalytic groups in the hydrolysis of RNA. To mimic this enzyme, two imidazole rings were attached to the primary face of \(\beta\)-CD, by displacement on \(\beta\)-CD diiodides.

By the use of appropriate bridging groups it is possible to make disulfonate esters of \(\beta\)-CD on neighboring glucose units (AB), on units one further apart (AC), or on units separated by two glucose residues (AD) (Figure 25).251 These were converted to the related diiodides, and reaction with imidazole afforded catalysts 37–39. All three of these enzyme mimics were able to catalyze the hydrolysis of a cyclic phosphate 40 that could bind well into the \(\beta\)-CD cavity, and all three showed a bell-shaped pH vs rate profile with a rate maximum near pH 6.2 (Figure 26). This is almost identical to the pH vs rate profile for the enzyme ribonuclease itself and indicates that one imidazole functions in its protonated form while the other is unprotonated. Isotope effect studies showed that the two catalytic groups were operating simultaneously.

In the classical mechanism for the enzyme, the hydrolysis of the cyclic phosphate intermediate in RNA cleavage involves water delivery to the phosphorus atom by the unprotonated imidazole while the leaving group is protonated by the imidazolium ion. If the enzyme mimics used a similar mechanism, the AD isomer 39 would be the most active, since it has the best geometry for this mechanism. However, it was found that the best catalyst for the hydrolysis of the cyclic phosphate 40 was the AB isomer 37. This indicated that the function of the imidazolium ion was to protonate the phosphate anionic oxygen, which it can reach better than in the other catalyst isomers. It has been argued that the enzyme itself uses a similar mechanism, but there is no general agreement yet on this idea.

A study was made on the importance of a tight fit of substrate into the binding cavity for such enzyme model systems.258 The substrates were either the tert-butyl derivative 40 or an analogue 41 with a
methyl group instead. The catalysts were all AB diimidazoles, but using α, β, or ω-cyclodextrins. The strongest binding was seen with the tert-butylated substrate 40 into the β-CD derivative 37, and this combination also gave the fastest rate of hydrolysis. It was also the most selective. The other catalyst−substrate combinations afforded mixtures of products 42 and 43, but with the 37, 40 combination only product 42 could be detected. To achieve optimum catalysis, it is important that there be no significant flexibility in the catalyst−substrate complex (except that needed to permit the reaction to occur).

With the availability of a set of cyclodextrin catalysts carrying two imidazoles in different geometries, it is possible to investigate other reactions that are catalyzed by simultaneous acid−base proton transfers. One process examined was the enolization of a bound ketone, p-tert-butylacetophenone (44), which binds well into β-CD (Figure 27).259 The reaction showed a bell-shaped pH vs rate curve, indicating that both the imidazole and the imidazolium ion played a catalytic role. It was found that the best isomer for the enolization, monitored by deuterium exchange, was the AD isomer. This indicated what the preferred geometry is for proton abstraction from carbon, an important matter not easily determined without the geometric information furnished by these bifunctional catalysts. The same catalyst set has also been examined, and found effective, in two intramolecular aldol condensations involving keto aldehyde 45 and dialdehyde 46.261,262

Synthetic approaches to cyclodextrins carrying two or three imidazoles on the C-3 secondary side positions have recently been reported263,264 as well as a compound with cyclic L-His−L-His linked to the primary carbon of β-CD.265 It will be interesting to see their catalytic abilities.

Amino- and polyaminocyclodextrins have significant catalytic properties. Cyclodextrin amines can catalyze or inhibit catechol autoxidation,266 can act as catalysts for decarboxylation,267 can catalyze deuterium exchange268 or perform aldol condensations,269,270 or can add metal binding and catalysis 271 or electrostatic binding272,273 to the normal cyclodextrin properties.

Cyclodextrin Dimers and Tetramers

Cyclodextrins bind typical substrates in water with binding constants of ca. 10^4 M⁻¹ or less. (A recent exception is lithocholic acid, whose binding constant to β-CD exceeds 10^6 M⁻¹.190) Thus it was of interest to make artificial enzymes that use two or more cyclodextrins to bind substrates well. It would be expected that a substrate that binds to both cyclodextrin cavities could have a binding constant exceeding 10^8 M⁻¹. Simple additivity of the binding free energies would lead to 10^8 M⁻¹, while the entropy advantage of the chelate effect should lead to an even larger binding constant than that.

The earliest study seems to be that of a cyclodextrin dimer 47 linked on the secondary face by a terephthalate group (Figure 28).274 Several other dimers have been constructed in which two cyclodextrins are joined by various linkers.214,275−284 In a systematic study, dimers made up of β-CD linked in various ways (48−50) were examined with substrates such as 51 that could put two good binding groups into the cyclodextrin cavities.285 With such relatively rigid substrates carrying two tert-butylphenyl groups, binding constants exceeding 10^9 M⁻¹ were observed.
The substrates were rigid, but the \(\beta \)-CD dimers had a single linker between them, so binding involved a loss of flexibility. Thus dimers \(\text{52} \) and \(\text{53} \) were made with two links attached to neighboring primary hydroxyls in \(\beta \)-CD (Figure 29). \(^{286} \) With a flexible substrate \(\text{54} \) that could fit well, the binding constant to \(\text{52} \) was \(1 \times 10^{10} \text{ M}^{-1} \), and with a rigid substrate of the correct shape it exceeded \(1 \times 10^{11} \text{ M}^{-1} \), comparable to the binding constants of very strong antibodies. However, \(\text{53} \) did not show strong binding.

Heterodimers have also been made linking two different cyclodextrins\(^ {287,288} \) and even cyclodextrin tetramers.\(^ {289,290} \)

If a cyclodextrin dimer has a catalytic group in the linker, one might observe strong catalysis in complexes where a substrate functional group is held directly above the catalytic linker group. This has been observed. For example, the \(\beta \)-CD dimer \(\text{55} \) with a linker containing a bipyridyl group can form complexes with metal ions (e.g. \(\text{56} \)) with two hydrophobic ends that can bind into the cyclodextrin cavities of the catalyst.\(^ {291–293} \) A cyclodextrin dimer carrying an imidazole unit attached to the linker has already been mentioned.\(^ {198} \)

One of the biggest challenges in the field of artificial enzymes is to imitate the ability of enzymes to perform selective reactions at particular points in a bound substrate. Enzymes can override the intrinsic reactivity of a substrate by such geometric control. For example, in the biosynthesis of cholesterol there are steps in which unactivated methyl groups are enzymatically oxidized in the presence of untouched olefinic groups. Although some substrates had been functionalized using such principles, the catalysts were covalently attached to the substrates, so catalytic turnover was not achieved.\(^ {28,294–303} \)

To make a selective oxidation catalyst capable of turnover, metalloporphyrins were synthesized carrying two or four \(\beta \)-CD groups (Figure 31).\(^ {290} \) It was found that the Mn(III) complex of \(\text{59} \), the porphyrin bearing four \(\beta \)-CD rings, could selectively catalyze the oxidation of olefinic substrates such as \(\text{60} \) that bind into two cyclodextrin rings to stretch the substrate across the porphyrin ring, with the substrate double bond directly above the porphyrin metal atom. This was also true when only two \(\beta \)-CD rings were present on opposite sides of the porphyrin, in \(\text{58} \), but not when they were on adjacent positions in \(\text{57} \). Reasonable catalytic turnover was observed.

In this reaction the metalloporphyrin accepts an oxygen atom from a simple reagent, such as iodosobenzene, and then transfers that oxygen to the bound substrate (Figure 32). After the product dissociates, a second substrate binds and the process repeats. This is fundamentally the same description as for enzymes of the class cytochrome P-450, which catalyze selective olefin oxidation as well.
Cytochrome P-450 enzymes also hydroxylate saturated carbon atoms, and it is of greater practical importance to imitate this process. Thus the same catalyst based on Mn(III), carrying a Mn(III) complex of 59, was examined with saturated substrates that could bind into two β-CD rings and stretch across the metalloporphyrin ring. It was found that the dihydrostilbene 61 was catalytically hydroxylated and with catalytic turnover of 650 (Figure 33). More interesting was the result with a steroid substrate. Androstanediol (62) was converted to the diester 63 which has tert-butylphenyl binding groups, and water solubilizing functionality—and submitted to the action of iodosobenzene with catalysis by the Mn(III) complex of 59. It was found that the dihydrostilbene 61 was catalytically hydroxylated and with catalytic turnover of 650 (Figure 33). More interesting was the result with a steroid substrate.

Androstanediol (62) was converted to the diester 63—which has tert-butylphenyl binding groups, and water solubilizing functionality—and submitted to the action of iodosobenzene with catalysis by the Mn(III) complex of 59. It was found that the dihydrostilbene 61 was catalytically hydroxylated and with catalyst selectivity within the limits of detection (Figure 34). Carbon 6 of the steroid was hydroxylated with regio- and stereospecificity and with 3–5 turnovers before the catalyst was itself destroyed by oxidation. Clearly such a catalytic system has great potential for performing useful oxidations, once the catalyst is made more stable and the geometry of the catalyst–substrate complex is adjusted so as to direct oxidations at will to otherwise inaccessible sites on the substrate.

Binding of the two ends of the substrate is critical for these results. In both the olefin and the steroid oxidations, no product was formed under these conditions with substrates that did not carry the tert-butylphenyl binding groups. Furthermore, a steroid carrying only one such group was oxidized but without single-site selectivity.

A dimer 64 has also been prepared in which two cyclodextrins are held on an iron tetraarylporphyrin, one on each face (Figure 35). It bound cyclohexene into the cyclodextrin cavity and catalyzed its oxidation more effectively than did a simple iron porphyrin lacking the cyclodextrin binding groups. One of the most interesting examples of a cyclodextrin acting to mimic an enzyme is the observation that it facilitates the folding of a protein. This mimics the role of chaperones, proteins that help guide the folding of other proteins.

Noncatalytic Biomimesis

A number of systems have been constructed to imitate biological functions other than enzymatic catalysis. For example, when a chromophoric material is bound into a cyclodextrin, it can undergo...
Figure 36. Naphthalene units in 65 acting as antennae to funnel light energy into the bound merocyanine dye 66.312–314

energy transfer with other chromophores covalently attached to the cyclodextrin. A striking example is the report that attachment of seven naphthalene units to the primary hydroxyl groups of β-CD in 65 permits them to act as antennae for energy transfer into a bound merocyanine dye (Figure 36).312–314 This imitates one of the important features of the photosynthetic center. A cyclodextrin carrying naphthalene units has also been used as the base for other antenna studies, part of a series going back to 1981.315,316

Furthermore, the selective binding of molecules by cyclodextrin derivatives can be thought of as mimicking the binding of antigens by antibodies. There is a large and growing literature devoted to such molecular recognition, sometimes with extremely large binding constants.286 While this is an important area, covering it exhaustively would expand this review beyond sensible limits.

Conclusions

It is clear that many interesting catalysts can be constructed, based on cyclodextrins, that perform biomimetic chemistry and other processes of interest. Since the cyclodextrin is used to bind a substrate, such species can be considered to be artificial enzymes. These catalysts generally show substrate specificity, for molecules that can bind into the cyclodextrin cavity. They often show specificity in the products formed, including stereospecificity. Thus they have many of the properties of enzymes. In the future, we can expect even more effective catalysts based on the principles that have been elucidated by the work described in this review.

References

(3) Lutter, H. D.; Diederich, F. Angew. Chem. 1984, 98, 1125.
(40) Breslow, R. New Scientist 1988, 119, 44.