ABSTRACT: Orotidine 5′-monophosphate decarboxylase (OMPDC) catalyzes the exchange for deuterium from solvent D2O of the C-6 proton of 1-(β-D-erythrofuranosyl)-5-fluorouracil (FEU), a phosphodianion truncated product analog. The deuterium exchange reaction of FEU is accelerated 1.8 × 10^4-fold by 1 M phosphite dianion (HPO_3^{2−}). This corresponds to a 5.8 kcal/mol stabilization of the vinyl carbanion-like transition state, which is similar to the 7.8 kcal/mol stabilization of the transition state for OMPDC-catalyzed decarboxylation of a truncated substrate analog by bound HPO_3^{2−}. These results show that the intrinsic binding energy of phosphite dianion is used in the stabilization of the vinyl carbanion-like transition state common to the decarboxylation and deuterium exchange reactions.

Orotidine 5′-monophosphate decarboxylase (OMPDC) employs no metal ions or other cofactors but yet effects an enormous 10^14-fold acceleration of the decarboxylation of orotidine 5′-monophosphate (OMP, Scheme 1A) to give uridine 5′-monophosphate (UMP). Several mechanisms utilizing different types of covalent or Bronsted acid catalysis by catalytic side chains have been proposed as pathways to avoid formation of the unstable UMP carbanion intermediate of a direct decarboxylation reaction (Scheme 1A). However, it is now known that OMPDC effectively catalyzes the exchange of the C-6 proton of UMP (Scheme 1B, X = H) and of 5-fluorouridine 5′-monophosphate (FUMP, Scheme 1B, X = F) for deuterium from solvent D2O. The kinetic data for the enzymatic deuterium exchange reaction of UMP show that OMPDC stabilizes a bound UMP carbanion intermediate relative to UMP by at least 14 kcal/mol, compared to the proton transfer reaction in water. This provides compelling evidence that the decarboxylation reaction also proceeds through the same enzyme-stabilized UMP carbanion intermediate (Scheme 1B).

The interactions between OMPDC and the phosphodianion group of OMP provide a large 12 kcal/mol stabilization of the transition state for enzyme-catalyzed decarboxylation. A part of this total 12 kcal/mol of transition state binding energy is utilized in the stabilization of the Michaelis complex. However, the binding of an exogenous phosphite dianion (HPO_3^{2−}) to OMPDC results in an 8 × 10^4-fold increase in k_{cat}/K_m for enzyme-catalyzed decarboxylation of the truncated substrate 1-(β-D-erythrofuranosyl)orotic acid (EO) that lacks a 5′-phosphodianion moiety (Scheme 2A).

This shows that the phosphodianion binding interactions do not simply anchor OMP to OMPDC, but rather that they are also utilized to activate OMPDC toward catalysis of the decarboxylation reaction. Phosphate dianion provides similar activation of the enzyme-catalyzed reactions of truncated substrates for the proton transfer reaction catalyzed by triosephosphate isomerase and the hydride transfer reaction catalyzed by glycerol 3-phosphate dehydrogenase. This transmission of binding energy from a nonreactive binding determinant to a distant reaction center is a special property of enzymatic catalysis. It has not yet been mimicked in the de novo design of protein catalysts, in part because the mechanisms for this utilization of binding energy are not fully understood.

The binding interactions between OMPDC and HPO_3^{2−} may be utilized to introduce destabilizing electrostatic stress between carboxylate side chains at OMPDC and the 6-CO_2− group of bound OMP at the ground-state Michaelis complex, which is relieved at a product-like unstressed transition state for the decarboxylation reaction. However, such ground state effects cannot explain the 8 × 10^4-fold difference in k_{cat}/K_m for the OMPDC-catalyzed reaction of EO in the absence and presence of a bound phosphate dianion, because this is a comparison of the activation barriers for conversion of unstressed free OMPDC to transition states in which any HPO_3^{2−}-induced stress has necessarily been relieved.

We now consider this question: Is the HPO_3^{2−} binding energy utilized in the stabilization of a UMP-carbanion intermediate or in the stabilization of some other feature of the transition state for decarboxylation of OMP? The removal of the 6-CO_2− group from the pyrimidine ring of EO gives the truncated product analog 1-(β-D-erythrofuranosyl)uracil (EU). Now, the observation that...
the OMPDC-catalyzed deuterium exchange reaction of EU is also strongly activated by HPO$_3^{2-}$ would provide compelling evidence that the dianion binding interactions are utilized in the stabilization of an enzyme-bound vinyl carbanion intermediate common to both the enzyme-catalyzed decarboxylation and deuterium exchange reactions (Scheme 1). Conversely, the failure to observe strong phosphate activation of the deuterium exchange reaction of EU would suggest that the specificity in the binding of HPO$_3^{2-}$ to the transition state also involves interactions between OMPDC and the 6-CO$_2$ group of the pyrimidine ring of OMP.

The OMPDC-catalyzed deuterium exchange reaction of EU is calculated to be too slow to detect at room temperature. We therefore examined the OMPDC-catalyzed deuterium exchange reaction of the truncated substrate 1-(β-D-erythrofuranosyl)-5-fluorouracil (FEU, Scheme 2B), where the electron-withdrawing 5-F provides a large stabilization of the carbanion-like transition state.5 The preparation of FEU is described in the Supporting Information.

The exchange for deuterium of the C-6 proton of h-FEU to give d-FEU catalyzed by OMPDC from S. cerevisiae (C176S mutant) in D$_2$O was monitored by 19F NMR spectroscopy at 470 MHz.5,13 Figure 1 shows 19F NMR spectra obtained during the OMPDC-catalyzed deuterium exchange reaction of FEU (4.2 mM) in the presence of 4.7 mM phosphate dianion in D$_2$O at pH 8.1 and 25 °C.

Figure 1. 19F NMR spectra obtained during the OMPDC-catalyzed deuterium exchange reaction of FEU (4.2 mM) in the presence of 4.7 mM phosphate dianion in D$_2$O at pH 8.1 and 25 °C.

The data in Table 1 show that 1 M HPO$_3^{2-}$ is calculated to result in a 1.8 \times 103-fold increase (k_{cat}/K_m)$_{obsd}$ for the OMPDC-catalyzed deuterium exchange reaction of FEU. This corresponds to a 5.8 kcal/mol stabilization of the vinyl carbanion-like transition state (Figure 3). By comparison, HPO$_3^{2-}$ shows a 2.0 kcal/mol larger (7.8 kcal/mol) affinity for the transition state for decarboxylation of the truncated substrate EU (Table 1).5 If reaction progress against time over the first 5–10% of the reaction (eq 1), where A_H and A_D are the integrated areas of the signals for h-FEU and d-FEU, respectively (Figure 1). Observed second-order rate constants (k_{cat}/K_m)$_{obsd}$ for the OMPDC-catalyzed deuterium exchange reaction, determined in the absence and presence of the phosphate dianion, were calculated according to eq 2. Details of the kinetic protocols and the experimentally determined rate constants are given in the Supporting Information.

$$\frac{A_D}{A_D + A_H} = k_{obsd}$$

$$\left(\frac{k_{cat}}{K_m}\right)_{obsd} = \frac{k_{obsd}}{[E]}$$

A value of (k_{cat}/K_m)$_{obsd}$ = 9.89 \times 10$^{-5}$ M$^{-1}$ s$^{-1}$ (Table 1) was determined as the second-order rate constant for the OMPDC-catalyzed deuterium exchange reaction of FEU in the absence of HPO$_3^{2-}$ at pH 8.1 (Scheme 3), where k_b = 5.44 \times 10$^{-5}$ M$^{-1}$ s$^{-1}$ is the observed second-order rate constant for enzyme-catalyzed deuterium exchange in the absence of phosphate, and f_{ND} = 0.55 is the fraction of FEU present in the reactive neutral N3-D form.14 The value of f_{ND} was calculated from pK$_a$ = 8.19 for ionization of the N3-D of the pyrimidine ring of FEU in D$_2$O at 25 °C and I = 0.10 (NaCl), determined by spectrophotometric titration at 269 nm.

Figure 2 shows the dependence of (k_{cat}/K_m)$_{obsd}$/k_b for the deuterium exchange reaction of FEU on the concentration of phosphate dianion in D$_2$O buffered by 50 mM glycylglycine at pH 8.1, 25 °C, and I = 0.14 (NaCl), where (k_{cat}/K_m)$_{obsd}$ is the observed second-order rate constant for the exchange reaction (eq 3, derived for Scheme 3). The data were fit to eq 4, with (k_{cat}/K_m)$_{obsd} = 9.89 \times 10^{-5} M^{-1}s^{-1}$, to give ($k_{cat}/K_m$)$_{obsd}/K_d = 1.76 M^{-2}s^{-1}$ as the third-order rate constant for OMPDC-catalyzed deuterium exchange into FEU activated by phosphate dianion (Table 1). In this nomenclature EHPI denotes an enzyme that is saturated with phosphate dianion. Table 1 also reports the kinetic parameters for the OMPDC-catalyzed decarboxylation of the whole substrate OMP and of the truncated substrate EU in D$_2$O buffered by 20 mM glycylglycine at pH 8.1, 25 °C, and I = 0.14 (NaCl) that were determined using published procedures.6

$$\left(\frac{k_{cat}}{K_m}\right)_{obsd} = \left(\frac{k_{cat}}{K_m}\right)_{f_{ND}} + \left(\frac{k_{cat}}{K_m}\right)_{f_{ND}} [HPO_3^{2-}]$$

$$\left(\frac{k_{cat}}{K_m}\right)_{obsd} = 1 + \left(\frac{k_{cat}}{K_m}\right)_{f_{ND}} [HPO_3^{2-}]$$

A value of (k_{cat}/K_m)$_{N3D}$ = 620 M$^{-1}$ s$^{-1}$ for reaction of the whole substrate was determined for the OMPDC-catalyzed deuterium exchange reaction of FUMP in D$_2$O under the conditions used for the exchange reaction of FEU (Table 1).
Table 1. Kinetic Parameters for the OMPDC-Catalyzed Decarboxylation and Deuterium Exchange Reactions of the Whole Substrates OMP and FUMP and of the Truncated Substrate Pieces EO and FEU and the Calculated Intrinsic Phosphodianion and Phosphate Binding Energies

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Whole Substrate</th>
<th>(k<sub>cat</sub>/K<sub>m</sub>)<sub>0</sub></th>
<th>Substrate Piece</th>
<th>(k<sub>cat</sub>/K<sub>m</sub>)<sub>0</sub></th>
<th>ΔG<sub>BP</sub></th>
<th>(k<sub>cat</sub>/K<sub>m</sub>)<sub>0</sub>/K<sub>0</sub></th>
<th>ΔG<sub>HP</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>OMP</td>
<td>D<sub>2</sub>O</td>
<td>5.50 ± 0.55 M<sup>-1</sup> s<sup>-1</sup></td>
<td>EO</td>
<td>0.030 ± 0.003 M<sup>-1</sup> s<sup>-1</sup></td>
<td>-11.2 kcal/mol</td>
<td>(1.73 ± 0.35) x 10<sup>3</sup> M<sup>-1</sup> s<sup>-1</sup></td>
<td>-7.8 kcal/mol</td>
</tr>
<tr>
<td>h-FUMP</td>
<td>D<sub>2</sub>O</td>
<td>620 ± 62 s</td>
<td>FEU</td>
<td>9.89 ± 0.99 x 10<sup>3</sup></td>
<td>-9.2 kcal/mol</td>
<td>1.76 ± 0.35 x 10<sup>3</sup> M<sup>-1</sup> s<sup>-1</sup></td>
<td>-5.8 kcal/mol</td>
</tr>
</tbody>
</table>

*In D₂O buffered by either 20 or 50 mM glycylglycine at pH 8.1, 25 °C and I = 0.14 (NaCl). Quoted errors are the range of uncertainty based on multiple determinations. *Second-order rate constant for OMPDC-catalyzed reaction of the whole substrate. *Second-order rate constant for OMPDC-catalyzed reactions of EO or FEU in the absence of phosphite dianion. *Third-order rate constant for the phosphate-activated OMPDC-catalyzed reactions of the substrate pieces EO or FEU (Scheme 3). *The intrinsic phosphodianion binding energy, calculated from the ratio (k_{cat}/K_m)₀/K₀. *Third-order rate constant for the phosphate driven OMPDC-catalyzed reaction of the substrate pieces EO or FEU (Scheme 3). *Calculated from (k_{cat}/K_m)₀/K₀ = 400 M⁻¹ s⁻¹ at pH 8.1 and pK_a = 8.37 for ionization of N3-D of FUMP. The ionized substrate is assumed to be unreactive toward OMPDC-catalyzed deuterium exchange. *Calculated from k_p = 5.44 x 10³ M⁻¹ s⁻¹ at pH 8.1 and pK_a = 8.19 for ionization of N3-D of FUMP (see text). 1 The difference in the phosphodianion binding energies for the decarboxylation and deuterium exchange reactions of the whole substrate. 1 The difference in the phosphate binding energies for the decarboxylation and deuterium exchange reactions of the truncated substrate pieces.

Scheme 3

OMPDC acts similarly in the catalysis of the deuterium exchange reactions of EU and FEU, and the only role of the 5-F is to provide electrostatic stabilization of a vinyl carbanion intermediate, then the binding of HPO₃⁻ would result in a 2.0 kcal/mol larger stabilization of the transition state for decarboxylation of EO compared with the deuterium exchange reaction of EU (Table 1).

Similarly, there is a 2.0 kcal/mol difference in the intrinsic phosphodianion binding energy determined for the OMPDC-catalyzed decarboxylation reaction of OMP (11.2 kcal/mol) and the deuterium exchange reaction of FUMP (9.2 kcal/mol, Table 1). In other words, 80% of the intrinsic phosphodianion binding energy in the decarboxylation reaction is utilized in the stabilization of the carbanion-like transition state common to both the decarboxylation and the deuterium exchange reactions. These results provide strong evidence that the interactions between bound HPO₃⁻ and the flexible phosphate gripper loop of OMPDC are directed toward effecting thermodynamic stabilization of a vinyl carbanion intermediate.

We are unsure of the explanation for the 2.0 kcal/mol larger dianion binding energy for the transition state of the decarboxylation compared to the deuterium exchange reactions. The D70N mutation at OMPDC from *M. thermautotrophicus* results in a 200-fold decrease in k_{cat} for decarboxylation of OMP but only a 2-fold decrease in the rate of the deuterium exchange reaction of FUMP. This provides evidence that interactions between the carboxylate groups of D70 and enzyme-bound Phosphite Binding Energies

Figure 2. Dependence of (k_{cat}/K_m)₀/K₀ for the OMPDC-catalyzed deuterium exchange reaction of FEU on the concentration of phosphate dianion in D₂O at pH 8.1, 25 °C and I = 0.14 (NaCl).

OMP promote decarboxylation of OMP, but not the deuterium exchange reaction of FUMP. However, the results from Table 1 are not relevant to the question of whether phosphate-driven loop closure induces destabilizing electrostatic interactions between carboxylate groups, which are relieved at the transition state for decarboxylation of OMP. This is because the rate constants reported in Table 1 provide a measure of the relative barriers to conversion of the free enzyme and reactants in the ground state to the respective transition states (see Figure 3). Destabilizing interactions at the intermediate Michaelis complex cannot lead to a rate-enhancing reduction in the barrier for formation of these transition states from free enzyme and substrates. 10 We note that one difference between the decarboxylation and deuterium exchange reactions is the presence of neutral CO₂ at the product complex for the decarboxylation reaction. We suggest that the absence of CO₂ from the transition state and product complex for the deuterium exchange reaction may lead to small changes in the position of other catalytic side chains that result in the observed 2.0 kcal/mol smaller phosphate.
activation of the deuterium exchange reaction of EU, compared with the decarboxylation of EO. This is consistent with the notion that a precise orientation of these side chains relative to the reactant is required to observe the full catalytic power of OMPDC.

In conclusion, the substrate phosphodianion and the substrate piece phosphate diion interact strongly with catalytic side chains at the flexible gripper loop of OMPDC.16 These interactions drive loop closure over the ligand, and this leads to a large stabilization of carbanion-like transition states for both the decarboxylation and deuterium exchange reactions. The results may be rationalized by the model shown in Scheme 4, where OMPDC in the open form (EO) is inactive and the rare unliganded closed ensemble (EC) and the HPO3−2−-liganded enzyme (EC•HPO3−2−) exhibit essentially equal high reactivities toward both carbon deprotonation and decarboxylation of the truncated substrates FEU and EO, respectively, so that

$$k_{\text{cat}}/K_m = (k_{\text{cat}}/K_m)'$$

The intrinsic binding energy of HPO3−2− is utilized to drive the unfavorable conformational change from EO to give EC. This model suggests that an important remaining challenge in understanding the mechanism of action of OMPDC is to provide a physical explanation for the proposed large effect of loop closure on the stability of the vinyl carbanion intermediate that is common to the OMPDC-catalyzed decarboxylation and deuterium exchange reactions.

Scheme 4

$$E_0 + S \stackrel{k_{\text{cat}}/K_m}{\longrightarrow} E_C + S \stackrel{k_{\text{cat}}/K_m}{\longrightarrow} E_C + \text{HPO}_3^{2−} \stackrel{k_{\text{cat}}/K_m}{\longrightarrow} P$$

$$P$$

$$(k_{\text{cat}}/K_m)'$$

$$P$$

Figure 3. Partial free energy profiles for the unactivated and phosphite-activated OMPDC-catalyzed deuterium exchange reactions of the truncated substrate h-FEU in D2O. The slowest step for the enzyme-catalyzed reaction is deprotonation of substrate by the alkyl amino side chain of Lys-93 to form the enzyme bound carbanion. The carbanion-like transition state is stabilized by 5.8 kcal/mol by the binding of the phosphite dianion. In this figure, the barrier to formation of the enzyme-bound carbanion also includes rotation of the CH2−ND2H+ bond at Lys-93 that is required to exchange the positions of the substrate derived −D and the solvent derived −D prior to hydron transfer to form d-FEU.4,11,15

ASSOCIATED CONTENT

Supporting Information. Experimental procedures for the synthesis of FEU and the kinetic protocols and pD titrations, two tables of values of k_{cat}/K_m and $(k_{\text{cat}}/K_m)_{\text{obsd}}$ for the reactions of FEU and EO, and a graph similar to that in Figure 2 showing the phosphite activation of the OMPDC-catalyzed decarboxylation of EO in D2O. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author
jrichard@buffalo.edu; j-gerlt@illinois.edu

ACKNOWLEDGMENT

We acknowledge the National Institutes of Health (Grant GM39754 to J.P.R. and Grant GM65155 to J.A.G.) for generous support of this work.

REFERENCES

(14) Ionization of the substrate at N3 is presumed to result in a large decrease in binding affinity and render the substrate unreactive towards enzyme-catalyzed deuterium exchange.