Discussion Exercise 10: Biological redox reactions

Key

Problem 1: flavoprotein b \rightarrow NAD+ \rightarrow cytochrome c \rightarrow flavoprotein a \rightarrow ferroprotein

<u>Problem 2.</u> The standard reduction potential of ferroprotein is slightly larger than the standard reduction potential for oxygen, so oxygen would not spontaneously accept electrons from ferroprotein under standard conditions.

<u>Problem 3.</u> For each of these redox reactions, write the two half reactions, then calculate the reduction potential for the overall reaction. (See Table 20.1.)

A. cytochrome c (+3) + cytochrome b (+2) \rightarrow cytochrome c (+2) + cytochrome b (+3)

Cyt c (+3) + e-
$$\Rightarrow$$
 cyt c (+2) $E_0' = + 0.22 \text{ V}$
Cyt b (+2) \Rightarrow cyt b (+3) + e- $E_0' = -0.07 \text{ V}$

For the overall reaction, $E_0' = +0.15 \text{ V}$

B. $NADH + NADP^+ \rightarrow NADPH + NAD^+$

NADP⁺ + 2e- + H⁺
$$\rightarrow$$
 NADPH E_{o} ' = - 0.32 V
NADH \rightarrow NAD⁺ + 2 e- + H⁺ E_{o} ' = + 0.32 V

For the overall reaction, $E_0' = 0 \text{ V}$

C.
$$\alpha$$
-ketoglutarate + 2 H⁺ + NAD⁺ \rightarrow succinate + NADH + CO₂
NAD⁺ + 2e- + 2H⁺ \rightarrow NADH E_0 ' = -0.32 V
Succinate + CO₂ \rightarrow α -ketoglutarate + 2e- E_0 ' = +0.67 V

For the overall reaction, E_0 ' = + 0.35 V

Note: This is the reaction of α -ketogluterate dehydrogenase, which is irreversible and spontaneous. α -Ketoglutarate is a strong reducing agent because its product, succinate has a very low reducing potential in this reaction.

Problem 4: See answer key in book

Problem 5:

$$NO_2^- + H_2O$$
 \rightarrow $NO_3^- + 2 H^+ + 2 e^ E^{o'} = -0.42 V$
 $\frac{1}{2}O_2 + 2 e^- + 2 H^+$ \rightarrow H_2O $E^{o'} = 0.82 V$

So the overall process has E° ' = 0.40 V

$$\Delta G^{\circ} = -nF E^{\circ} = -2 (96,485 \text{ J/mol V}) (0.40 \text{V}) = -77.2 \text{ kJ/mol}$$

<u>Problem 6:</u> The reduction potential of NAD⁺ and NADP⁺ are both -0.32 V. Therefore, the change in reduction potential for the reaction must be zero. Therefore:

 $\Delta G^{\circ} = -nF E^{\circ} = zero$, and when the standard free energy is zero, the equilibrium constant is 1.